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Abstract
By means of Green functions within the equation of motion scheme, we theoretically
investigate electron transport through two lateral quantum dots between which spin-dependent
tunneling occurs. In the presence of intradot Coulomb interactions, the expressions for spin and
charge currents are given under the Hartree–Fock approximation. The magnitude and
polarization of the spin current can be controlled critically by adjusting the gate voltage applied
over the quantum dots. The variation of the spin current and the charge current versus the gate
voltage can be qualitatively explained by a spin-dependent resonant tunneling picture.

1. Introduction

In recent years the study of spintronic devices, which
utilize the spin rather than the charge of an electron, has
been intensified. They are expected to operate at much
higher speeds than conventional devices and have potential
applications in quantum computing [1, 2]. Finding novel
ways to generate, control and utilize the spin-polarized
current is of great importance in designing and manufacturing
spintronic devices. Spin polarization occurs naturally in
any material with an imbalance of the spin populations at
the Fermi level, so ferromagnetic metals usually act as a
source of spin injection to a semiconductor [3–6]. Also a
spin current arises in the electron system with substantial
spin–orbit interaction. One kind of spin–orbit interaction
originates from the coupling of conduction electrons and
localized spins of impurities. When an unpolarized electron
beam is scattered by an impurity it becomes polarized
perpendicular to the plane of scattering. Further scattering
of this polarized beam is asymmetric for electrons with
opposite spin polarizations. Thus a transverse spin current
arises [7, 8]. The other kind of spin–orbit interaction is
intrinsic in conventional hole-doped semiconductors or in two-
dimensional semiconductor heterostructures. The spin Hall
effect and other transport characteristics have been widely
studied in these systems [9–11].

In this paper we focus on the quantum-dot structure
which is another system for studying spin-polarization
transport. Devices consisting of quantum dots have

undergone considerable investigation from a theoretical
viewpoint [12–16]. In most of these studies, a spin-polarized
current is induced by either a rotating magnetic field applied
directly to the quantum dot or a ferromagnetic lead. Here
we suggest a new device, a lateral double quantum dot with
spin-dependent interdot coupling, that produces spin-polarized
current. Technically spin-dependent interdot coupling can be
achieved by applying a constant magnetic field on the tunneling
junction between two quantum dots [17]. This magnetic
field make the electron spin perform Larmor precession when
it passes through the potential barrier. An electron with
spin parallel to the magnetic field has a larger tunneling
probability than one with spin antiparallel to the magnetic
field [18]. As a result, a spin-polarized current is produced.
Using the Keldysh nonequilibrium Green function technique
and employing the Hartree–Fock approximation, we derive
expressions for spin-resolved currents. For a strongly coupled
double quantum dot we demonstrate numerically that the
magnitude and polarization of the spin current is tunable via
a gate voltage. The variation of spin current versus the gate
voltage can be qualitatively explained by a spin-dependent
resonant tunneling model.

2. Model and formula

The considered system of the double quantum dots coupled in
series to two normal metal leads is presented in figure 1. The
intradot Coulomb interaction is scaled by energy U while the
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Figure 1. Energy sketch of the lateral double quantum dot coupled to
two mental leads. The potential barrier between two quantum dots is
spin-dependent.

interdot Coulomb interaction is neglected. The tunnel coupling
between two quantum dots is spin-dependent. The second
quantized Hamiltonian corresponding to our model is written
as

H = Hd + Hα + HT, (1)

with

Hd =
∑

mσ

εmσ d†
mσ dmσ +

∑

m

Unm↑nm↓

+
∑

σ

[(t + σ�t)d†
1σ d2σ + H.c.] (m = 1, 2), (2)

Hα =
∑

αkσ

εαkσ c†
αkσ cαkσ (α = l, r), (3)

HT =
∑

kσ

(Vlk1c†
lkσ d1σ + Vrk2c†

rkσ d2σ + H.c.). (4)

Clearly Hd is due to the double quantum dot part, Hα describes
the conduction electrons in the left and right leads, and
HT introduces the tunneling between dot and lead with the
coupling matrix element Vαkm . Here d†

mσ (dmσ ) is the creation
(annihilation) operator for an electron with spin σ in the
quantum dot m whereas c†

αkσ (cαkσ ) are the corresponding
operators in the left and right leads. nmσ = d†

mσ dmσ is
the particle number operator. The third term on the right-
hand side of equation (2) gives the tunneling between the two
quantum dots without spin flip. The tunneling coefficients t =∫

ϕ∗
1 (x)(

p2

2m +V )ϕ2(x) dx and �t = 1
2 gμB B

∫
ϕ∗

1 (x)ϕ2(x) dx ,
where ϕm(x) is the space wavefunction of each quantum dot.
As mentioned in the introduction, it is considered that �t is
induced by a static magnetic field applied to the barrier region
between two quantum dots. In our considerations we assume
the excitation energy to be very large and only two energy
levels εmσ and εmσ + U to be in each quantum dot.

In our model there are no origins inducing spin-flip, so the
spin-resolved current Iσ through the system is uniform in the
steady state regime. That is to say, the spin-resolved current Irσ

from the right lead is opposite to the current Ilσ from the left
lead, i.e. Iσ = Irσ = −Ilσ [19]. This current can be calculated
in terms of the Green functions of coupling quantum dots (see
the appendix)

Iσ = −e Im

[∫
dω

2π
	r2(ω)[2Gr

2σ,2σ (ω) fr (ω) + G<
2σ,2σ (ω)]

]
,

(5)

where fα(εαkσ ) = [exp[(εαkσ − μα)/(kBT )] + 1]−1 is
the Fermi distribution function of electrons in the lead α

with chemical potential μα , temperature T and Boltzmann
constant kB. 	αm(ω) = 2π

∑
k |Vαkm |2δ(ω − εαk) is the

linewidth function and we have assumed that the energy
εαkσ of the conduction electrons in leads is spin-degenerate,
i.e. εαk = εαkσ . Gr

22σσ (ω) and G<
22σσ (ω) are the Fourier

transform of standard retarded Green function Gr
mσ,nσ ′(t, t ′) ≡

〈〈dmσ (t)|d†
nσ ′(t ′)〉〉r ≡ −iθ(t − t ′)〈{dmσ (t), d†

nσ ′(t ′)}〉 and
lesser Green function G<

mσ,nσ ′(t, t ′) = 〈〈dmσ (t)|d†
nσ ′(t ′)〉〉< ≡

i〈d†
nσ ′(t ′)dmσ (t)〉, respectively. In the basis |1 ↑〉, |2 ↑〉, |1 ↓〉

and |2 ↓〉, they can be calculated through the Dyson equation
and Keldysh equation, i.e.

Gr (ω) = gr(ω) + gr (ω)�r Gr (ω), (6)

G<(ω) = Gr (ω)�<Ga(ω), (7)

respectively, where

Gr (ω) =

⎛

⎜⎜⎜⎝

Gr
1↑1↑ Gr

1↑2↑ Gr
1↑1↓ Gr

1↑2↓
Gr

2↑1↑ Gr
2↑2↑ Gr

2↑1↓ Gr
2↑2↓

Gr
1↓1↑ Gr

1↓2↑ Gr
1↓1↓ Gr

1↓2↓
Gr

2↓1↑ Gr
2↓2↑ Gr

2↓1↓ Gr
2↓2↓

⎞

⎟⎟⎟⎠ , (8)

gr (ω) =
⎛

⎜⎝

g1↑ 0 0 0
0 g2↑ 0 0
0 0 g1↓ 0
0 0 0 g2↓

⎞

⎟⎠ , (9)

and Ga(ω) is the corresponding advanced Green function.
gr (ω) denotes the retarded Green function of uncoupled dots
with the matrix elements

gmσ = ω − εmσ − U + U 〈nmσ̄ 〉
(ω − εmσ )(ω − εmσ − U)

, (10)

in which the average values of the occupation numbers
〈nmσ 〉 = 〈d†

mσ (t)dmσ (t)〉 need to be calculated self-
consistently by using the formula

〈nmσ 〉 = −i
∫

dω

2π
G<

mσmσ (ω). (11)

The self-energy �r (ω) in equation (6) can be obtained by
the standard equation of motion technique (see the appendix).
Under the Hartree–Fock approximation, it has the form

�r (ω) =
⎛
⎜⎝

�1↑ (t + �t) 0 0
(t + �t) �2↑ 0 0

0 0 �1↓ (t − �t)
0 0 (t − �t) �2↓

⎞
⎟⎠

(12)
with �mσ = −i

2 	αmδm1δαl + −i
2 	αmδm2δαr . And the lesser self-

energy is given by

�< = −(�r − �a)(δm1δαl + δm2δαr ) fα

=
⎛

⎜⎝

i	l1 fl 0 0 0
0 i	r2 fr 0 0
0 0 i	l1 fl 0
0 0 0 i	r2 fr

⎞

⎟⎠ . (13)
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Figure 2. The electric current (dashed line) and the spin current
(solid line) versus the gate voltage ε for noninteracting electrons with
t = 2, �t = 1 and (a) V = 1, (b) V = 3, (c) V = 5, (d) V = 10.
The dotted line as a reference curve of electric current for the case
�t = 0.

In our consideration, the interesting currents are the charge
current Ie and the spin current Is, which are defined by

Ie = I↑ + I↓ (14)

and
Is = I↑ − I↓, (15)

respectively.

3. Numerical result and discussion

Once the retarded and lesser Green functions for an electron
at the double quantum dot are known, the current and its
transport properties can be determined using equation (5). In
the following we present the numerical results for the currents
concerned. In the wide-band limit, 	l1 and 	r2 are independent
of energy ω and we assume 	l1 = 	r2 = 1 as an energy
unit. The bare energy levels εmσ of quantum dots are spin-
degenerate and the energy levels belonging to different dots are
set to be equal by adjusting the gate voltage, i.e. εmσ = ε. The
bias voltage V is applied to the left electrode, so that μl = V
while μr is kept constant equal to zero. The temperature is
assumed to be kBT = 0.01.

We first consider the case of noninteracting electrons,
i.e. U = 0 in Hamiltonian Hd. With t = 2 and �t = 1,
figure 2 shows the electric current Ie (dash line) and spin
current Is (solid line) as a function of the position of the
dot energy ε for selected values of the bias voltage V . The
dotted line gives a reference curve for electric current for
the case �t = 0. The sign of the spin current indicates its

↓

↓

↑

↑3ε +

1ε +

3ε −

1ε −

3
E ↓

4
E ↓

2
E ↑

↑1E

rμ

lμ

Energy

Figure 3. The schematic eigenenergies of the equivalent single
quantum dot for the case of noninteracting electrons and a bias
window between μr and μl. The parameters are the same as in
figure 2.

polarization. The resonances of spin current with opposite
polarization are displayed, which may serve as a guideline to
construct a novel class of spintronic devices. To explain the
origin of the resonances we employ a spin-dependent resonant
tunneling picture. In the basis {|1 ↑〉, |2 ↑〉, |1 ↓〉, |2 ↓〉}, the
Hamiltonian Hd has the matrix form

Hd =
⎡

⎢⎣

ε t + �t 0 0
t + �t ε 0 0

0 0 ε t − �t
0 0 t − �t ε

⎤

⎥⎦ (16)

with four eigenvalues E1↑ = ε + t + �t, E3↓ = ε + t −
�t, E4↓ = ε − t + �t and E2↑ = ε − t − �t . For chosen
parameters t = 2 and �t = 1, the distance between two
near eigenenergy levels is 2 and E1↑ > E3↓ > E4↓ >

E2↑. As shown in figure 3, the coupling double quantum dot
for noninteracting electrons can be equivalent to one single
quantum dot with four energy levels, two levels occupied by
spin-up electrons and two levels by spin-down electrons. In
fact, the isolated energy levels expand to energy bands due
to the coupling of quantum dots and leads. The width of
the energy band is determined by the coupling strength. The
transport channels are supplied by the energy bands lying
in the bias window, hence the currents in figures 2(a)–(d)
appear at the same position of dot energy but disappear at
different positions because of the bias voltage windows with
fixed underside μr = 0 and selected upper side μl = V .
As an illustrative example we explain the variations of current
in figure 2(a) where the width of the bias window is 1. In
the beginning, four equivalent energy bands are all below the
window, so the electric current and the spin current are zero.
With increasing gate voltage ε, the band edge of E1↑ first enters
the bias window and a positive spin current appears. When
ε = −2.5, the center of band E1↑ is in the middle of the bias
window, so the positive spin current reaches a maximum. By
further increasing ε, the energy band E1↑ exits the bias window
while the energy band E3↓ enters it. Accordingly, the positive
spin current decreases and the negative spin current increases.
The positive spin current does not revive until the energy band
E2↑ enters the bias window. When four eigenenergy bands pass
through the bias window, the currents become zero.

3
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Figure 4. The electric current (dashed line) and the spin current
(solid line) versus the gate voltage ε for noninteracting electrons with
(a) t = 0.8,�t = 0.5 and (b) t = 20,�t = 10. Other parameters are
the same as in figure 2(d). The dotted line is a reference curve for
electric current for the case �t = 0.

In figures 2(b) and (c), the width of the bias window
is 3 and 5, respectively. Two energy bands, E3↓ and E4↓,
occupied by spin-down electrons, can reside in the bias window
together, so there is only one larger resonant valley for negative
spin current. As the width of bias window is increased to 10
(figure 2(d)), four energy bands can be contained in it together.
However, the spin current is not zero but positive for this
configuration. The reason is that the spin-up transport channels
are more effective than the spin-down transport channels due to
the spin-dependent coupling t±�t between two quantum dots.
This also explains why the absolute values of maximal positive
spin current is larger than that of minimal negative spin current
in figures 2(a) and (d), for example Max(Is) = 0.123 while
Min(Is) = −0.116 in figure 2(a).

Figure 4 displays the currents versus the position of the dot
energy ε for other choices of parameters t and �t with fixed
chemical potential μl = 10 and μr = 0. If we take t = 0.8
and �t = 0.5, the negative spin current cannot be obtained as
shown in figure 4(a). When we choose t = 20 and �t = 10,
the completely polarized current, i.e. Ie = |Is|, is observed
interestingly in figure 4(b), which can guide the design of the
spin switch device. In this situation, the coupling between two
quantum dots is larger than that between the quantum dot and
the lead so that the transport of electrons is dominated by the
tunneling through the barrier between the quantum dot and
lead. Therefore, the spin-up transport channels and the spin-
down channels are almost equally effective.

Next, we study the case of interacting electrons. The
average values 〈nmσ̄ 〉 in equation (10) must be calculated
self-consistently via equation (11). In figure 5, we show
the electric current and the spin current as a function of
gate voltage ε for different Coulomb interaction U. The bias
voltage is chosen as V = 10 and other parameters are the
same as in figure 2. The variations of the currents can be
explained qualitatively by an effective spin-dependent resonant
tunneling picture analogous to the noninteracting case. Under
the Hartree–Fock approximations, the coupled double quantum
dot with intradot Coulomb interaction can be equivalent to a
single quantum dot with eight energy levels, four occupied by
spin-up electrons and four by spin-down electrons. These eight

Figure 5. The electric current (dashed line) and the spin current
(solid line) versus the gate voltage ε for interacting electrons with
different Coulomb interaction: (a) U = 2, (b) U = 5, (c) U = 12
and (d) U = ∞. Other parameters are the same as in figure 2(d). The
dotted line is a reference curve of electric current for the case
�t = 0.

energy levels are the poles of Green function Gr (ω), which can
be obtained by solving the equation

|Gr (ω)−1| = |gr (ω)−1 − �̃r (ω)| = 0 (17)

where

�̃r (ω) =
⎛
⎜⎝

0 (t + �t) 0 0
(t + �t) 0 0 0

0 0 0 (t − �t)
0 0 (t − �t) 0

⎞
⎟⎠ ,

(18)
and it comes from �r (ω) without taking account of the
coupling between the lead and the quantum dot. To solve
equation (17), we first diagonalize Gr (ω)−1, then make
the diagonal element equal to zero, so we can obtain four
equations. Each equation has more than one solution due
to g−1

mσ not being a linear function of ω. As a result, we
can obtain eight different solutions for equation (17) in all,
though Gr (ω) is a 4 × 4 matrix. Four of these solutions,
which are functions of t + �t , can be identified as the
energy levels occupied by spin-up electrons. The other four
solutions are functions of t −�t and the corresponding energy
levels are occupied by spin-down electrons. It should be
mentioned that there are also eight equivalent energy levels for
the case of two electron states per quantum dot but without
Coulomb interaction. These energy levels similar to figure 3
are independent of the occupation numbers 〈nmσ 〉, and their
variations with ε have a parallel configuration. However, the
eight eigenenergy levels we obtain depend on the occupation
numbers 〈nmσ 〉 and they must be calculated numerically via
equation (11). We take the example of U = 5 to illuminate the

4
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Figure 6. Part (a) is just figure 5(b). Part (b) depicts the eigenenergy
of the equivalent single quantum dot for the case of interacting
electrons as a function of the gate voltage ε. The space between two
horizontal dashed lines is the bias voltage window.

variations of currents as shown in the figure 6(a). Figure 6(b)
plots the eight equivalent eigenenergy levels as a function of
gate voltage ε. The energy level occupied by spin-up (spin-
down) electrons is indicated by an up-arrow ↑ (down-arrow
↓). With increasing gate voltage ε, the energy level occupied
by spin-up electrons first enters the bias window about at
ε = −8, meanwhile the electric current and the positive
spin current have appeared due to the expansion of energy
levels. When the gate voltage ε varies from −3.6 to −1.8,
two spin-up energy levels and two spin-down energy levels are
always in the bias window, so the electric current and spin
current keep a plateau. At the symmetrical point of current,
i.e. ε = 2.5, all eight energy levels become transport channels
and the electric current reaches a maximum. Once ε departs
from the symmetry point, a spin-up energy level first goes out
from the bias window and as a result the spin current drops. By
further increasing ε and up to the last energy level exiting the
bias window, the electric current and spin current revert to zero
asymptotically as expected.

It may be useful to estimate the practical value of the
effective magnetic field for generation of spin-dependent
coupling between two quantum dots in our system. For the
temperature kBT = 0.01	 and the linewidth function 	 =
5 μeV in typical GaAs/AlGaAs quantum-dot experiments [20],
the magnitude of the magnetic field corresponding to �t = 	

is B ∼ 0.17/g T, where g is effective electron g-factor. In
our considerations we assume that a uniform magnetic field
is just confined to the barrier region, which is experimentally
difficult to do. In fact, if a spatially nonuniform magnetic field
is applied to both the barrier region and the two quantum dots, a
similar effect can be obtained when the magnetic field applied
to the barrier region is strong but the magnetic field applied

to quantum dots is weak compared to the linewidth function 	.
For this magnetic field configuration, the influence on quantum
dots can be neglected and it should be experimentally feasible
by using present technologies.

4. Conclusion

In summary, we have proposed a new structure, a lateral
double quantum dot with spin-dependent interdot coupling in
a gated semiconductor device, to generate a spin-polarized
current. Unlike the usual quantum-dot spin device, where
a rotating magnetic field is required to cause the spin flip,
we suggest that the tunneling junction region between two
quantum dots has a static magnetic field imposed or is made
of ferromagnetic material. Using the Keldysh nonequilibrium
Green function technique and employing the Hartree–Fock
approximations, the expressions for spin-resolved currents are
derived when considering the intradot Coulomb interaction.
It is demonstrated numerically that the magnitude and the
polarization of the spin-polarized current are tunable by
adjusting the gate voltage applied over the quantum dots.
Interesting resonance behavior of the spin-polarized currents
is observed and can be qualitatively explained by a spin-
dependent resonant tunneling model.
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Appendix. Deduction of the spin-resolved currents

The spin-resolved current in right lead is defined as

Iσ = −e
d

dt

〈
∑

k

c†
rkσ (t)crkσ (t)

〉

= 2ie Re

[
∑

k

Vrk2

〈
c†

rkσ (t)d2σ (t)
〉]

. (19)

According to the Langreth theorem [21], the quantum
statistical average value 〈c†

rkσ (t)d2σ (t)〉 can be expressed as
〈
c†
αkσ (t)dmσ (t ′)

〉
= −i

∫
dt1V ∗

αkm [Gr
mσ,mσ (t, t1)g<

αkσ (t1, t ′)

+ G<
mσ,mσ (t, t1)ga

αkσ (t1, t ′)], (20)

where ga
αkσ (t1, t ′) = iθ(t ′ − t) exp[−iεαkσ (t − t ′)] and

g<
αkσ (t1, t ′) = i fα(εαkσ ) exp[−iεαkσ (t − t ′)] are advanced

and lesser Green functions for free electrons in the leads,
respectively. Making a Fourier transform to equation (20), the
spin-resolved current formula equation (5) is obtained.

To determine the currents through the double-dot
system, we solve the retarded Green function Gr

mσ,nσ ′(ω) in
equation (5) by a standard equation of motion technique

ω〈〈A|B〉〉r = 〈{A, B}〉 + 〈〈[A, H ]|B〉〉r ,

5
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where A, B are arbitrary operators. Note that the energy ω

includes an infinitesimal imaginary part i0†. Applying the
equation of motion to the Green function 〈〈dmσ |d†

nσ ′ 〉〉r , we
have

ω〈〈dmσ |d†
nσ ′ 〉〉r = δmnδσσ ′ + εmσ 〈〈dmσ |d†

nσ ′ 〉〉r

+ U〈〈nmσ̄ (t)dmσ (t)|d†
nσ ′ 〉〉r

+ (t + σ�t) δ1m〈〈d2σ |d†
nσ ′ 〉〉r

+ (t + σ�t) δ2m〈〈d1σ |d†
nσ ′ 〉〉r

+ δ1m

∑

k

V ∗
l1k〈〈clkσ (t)|d†

nσ ′ 〉〉r

+ δ2m

∑

k

V ∗
r2k〈〈crkσ (t)|d†

nσ ′ 〉〉r , (21)

where m̄ = 2 when m = 1, σ̄ = ↓ when σ = ↑ and vice versa.
Here 〈〈nmσ̄ (t)dmσ |d†

nσ ′ 〉〉r and 〈〈cαkσ |d†
nσ ′ 〉〉r are the new Green

functions. As usual for an interacting problem, one has also to
calculate these new Green functions

ω〈〈cαkσ |d†
nσ ′ 〉〉r = εαkσ 〈〈cαkσ |d†

nσ ′ 〉〉r

+ δαl Vα1k〈〈d1σ |d†
nσ ′ 〉〉r + δαr Vα2k〈〈d2σ |d†

nσ ′ 〉〉r (22)

ω〈〈nmσ̄ dmσ |d†
nσ ′ 〉〉r = δmnδσσ ′ 〈nmσ̄ 〉

+ εmσ 〈〈nmσ̄ dmσ |d†
nσ ′ 〉〉r + U〈〈nmσ̄ dmσ (t)|d†

nσ ′ 〉〉r

+ δ1m (t + σ�t) 〈〈n1σ̄ d2σ |d†
nσ ′ 〉〉r

+ δ2m (t + σ�t) 〈〈n2σ̄ d1σ |d†
nσ ′ 〉〉r

+ δ1m

∑

k

V ∗
l1k〈〈n1σ̄ clkσ |d†

nσ ′ 〉〉r

+ δ2m

∑

k

V ∗
r2k〈〈n2σ̄ crkσ |d†

nσ ′ 〉〉r

− δ1m

∑

k

Vl1k〈〈c†
lkσ̄ dmσ̄ dmσ |d†

nσ ′ 〉〉r

− δ1m

∑

k

V ∗
l1k〈〈clkσ̄ d†

mσ̄ dmσ |d†
nσ ′ 〉〉r

− δ2m

∑

k

Vr2k〈〈c†
rkσ̄ dmσ̄ dmσ |d†

nσ ′ 〉〉r

− δ2m

∑

k

V ∗
r2k〈〈crkσ̄ d†

mσ̄ dmσ |d†
nσ ′ 〉〉r

− δ1m (t + σ̄�t) 〈〈d†
2σ̄ dmσ̄ dmσ |d†

nσ ′ 〉〉r

+ δ1m (t + σ̄�t) 〈〈d†
mσ̄ d2σ̄ dmσ |d†

nσ ′ 〉〉r

− δ2m (t + σ̄�t) 〈〈d†
1σ̄ dmσ̄ dmσ |d†

nσ ′ 〉〉r

+ δ2m (t + σ̄�t) 〈〈d†
mσ̄ d1σ̄ dmσ |d†

nσ ′ 〉〉r . (23)

Now, the Hartree–Fock decoupling scheme is applied to the
new Green functions generated on the right-hand side of
equation (23),

〈〈nmσ̄ dm̄σ |d†
nσ ′ 〉〉r = 〈nmσ̄ 〉 〈〈dm̄σ |d†

nσ ′ 〉〉r ,

〈〈nmσ̄ cαkσ |d†
nσ ′ 〉〉r = 〈nmσ̄ 〉 〈〈cαkσ |d†

nσ ′ 〉〉r ,
(24)

and set
〈〈d†

m̄σ̄ dmσ̄ dmσ |d†
nσ ′ 〉〉r = 0,

〈〈d†
mσ̄ dm̄σ̄ dmσ |d†

nσ ′ 〉〉r = 0,

〈〈cαkσ̄ d†
mσ̄ dmσ |d†

nσ ′ 〉〉r = 0,

〈〈c†
αkσ̄ dmσ̄ dmσ |d†

nσ ′ 〉〉r = 0,

(25)

which closes the set of equations (21)–(23) and the compact
form can be written as the Dyson equation (equation (6)) with
the self-energy equation (12).
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